skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steavenson, Benjamin_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A tomographic laser absorption spectroscopy technique, using mid-wave infrared light sources, is presented as a quantitative method to spatially resolve the mole fraction and temperature in small-diameter reacting flows relevant to the combustion of nitrogen-based fuels and propellants, with particular applicability to the study of green propulsion concepts. Tunable quantum and interband cascade lasers are used to spectrally resolve multiple rovibrational transitions near 4.42 and 5.18 µm to measure N2O, NO, and H2O mole fractions, as well as gas temperature in an axially symmetric H2-N2O premixed jet flame. Signal processing methods for direct N2O thermometry utilizing a Boltzmann regression are detailed for the experiment, including considerations for the tomographic reconstruction of axial and radial profiles of thermochemical structure for the flame. The tomographic absorption spectroscopy technique is demonstrated to recover radially resolved N2O, NO, and H2O mole fractions for multiple planes at different heights above the jet exit, revealing distinct reaction zones in the jet flame associated with the production of each H2O and NO surrounding the relatively cool reactant core containing N2O. 
    more » « less